An N-D cryptoscheme

Y1-Shiung Yeh

Wei-Shen Lai

[-Te Chen

Department of Computer Science and Information Engineering
National Chiao-Tung University .
1001 Ta Hsueh Road

Hsinchu

Taiwan 30050

R.O.C

E-mail: (ysyeh, wslai, itchen)@csie.nctu.edu.tw

_____"'__—_——"———'—'——_—r———-—-——-——.—_._._________ -
ABSTRACT

In this paper, we construct a nondeterministic number representation (NNR)
system which maps -an integer to. a set of vectors and a deterministi¢: number repre-
sentation (DNR) system which maps an interger to a single vector. Applying NNR system.
and DNR system, a cryptosystem named as an NNR-DNR Cipher (NDC) is constricted.
The main property of NDC is that a plaintext may be probabilisticly mapped to different
ciphertexts for a given key, this feature increase the difficulty of cryptanalysis.

. _

Keywords: Cryptography, NNR (Non-deterministic number repre-
sentation), DNR (Deterministic number representation), NDC (NNR-
DNR Cipher).

1 INTRODUCTION

For the ciphers which encrypt a plaintext to the same ciphertext
as key is unchanged, an eavesdropper may determine the frequency of
certain plaintext by counting the appearance frequency of the corre-
sponding ciphertext, even he doesn’t know the exact plaintext [1, 3].
The information leakage may imperil the application system applying
the ciphers if the set of transfered messages has few members.
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In this paper, we suggest a new cipher which has no above week-
ness. The idea is that a value may have different representations in
a number system. Thus, we can select the underlying number system
to allow a plaintext mapping to multiple ciphertexts. The selected
ciphertext corresponding to a plaintext may be different each time for
a given key, thus the appearance frequency of a plaintext can be hidden.
The deails are described in the following sections.

2. BASIC CONCEPTS AND NOTATIONS

2.1 Notations and Vector Operations

The symbol |X| denotes the number of elements in a set X and
2¥ is the power set of X.

Definition 2.1.1 Let V be a set of n-tuple vectors and v be an
n-tuple vector. The inner product of V and v is defined as
V-v={v-vy; | ve V}. The operation is trivially commutative.

Definition 2.1.2 Let v,=<py,p,, ..., p,> and v,=<qy,Qz, ...
g,> We say that v,<v, if and only if p;<gq; fori=1,2, .., n.

Definition 2.1.3 Let v = <wy, wy, ..., w,> be an n-tuple vector, v is
called a positive vector if w; >0, for i = 1, 2, ..., n. The complete set
of the positive vector v is defined as:

Cwy=1{<z, 2, ,2z,> 0<z<w;, fori=1,2, .., n}

2.2 Number Representations

Definition 2.2.1 Given two positive vectors, v, and v,, the range
S ., of v, with respect to v, is defined as:
S,y =lilie Cu,)- Ut
vp=<by, by, ..., b,> is called the base vector and v, =<u,, u,, ...,

u,> is called the boundary vector. We also define that:
T("'h' v) = 10<i< Up - Uy}

Definition 2.2.2 The set (S, , ) Uy, U,) together with + (an addi-
. e T 5
tion), and e (a product), denoted as (S(U',,_, p Ups Uys +, ®), i8 called a
number representation system.

For simplicity, throughout this paper we use (S(v' Lo, Vb v,) to de-
note a number representation system [4].
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For a number representation system (S, , ) s, V), We can con-

w0y vy, l)vhv)()
={vlv-vy=r,ve C(v,,)} and another mapping gg , ,, from

(O b P
C(v)toS(v v,) 85 &8 U)(v)—v Up-

struct a mapping fg By 8) from S, ,, to 2 Cw) ag fs

[ Up»

Results 2.2.1

a) |f(s e u)(r)|> 1 Vre S(U:,’U.,)

b) | f(s(. . (MI=0 Vvre "I‘(Ub' v) = Sw,.u) -

)] g(s(. oy U is onto from C(v,) to S(v.,yv..)'

d) B4, v is not onto from C(v,) to T, ) unless T, ,,=
Sw,.v,) -

Example 2.2.1 Let (S, , vp,v,) be a number representation
system, v, =<7, 1, 2> and v, =<1, 2, 1>, we have

Table 2.1
A Number Representation

0 | <000> 6

1| <010> 7 | <100>

2 <001>, <020> 8 | <110>

3 | <011> 9 |"<1013, <120>
4 | <021> 10| <111>

5 11 | <121>

C(v,) = {<000>, <001>, <010>, <011>, <020>, <021>, <100>,
<101>, <110>, <111>, <120>, <121>}.

Sq,.0)=10,1,2,3,4,7,8,9,10,11}.
Tg, 0y =10.1,2,3,4,5,6,7,8,9, 10,11}

fis, . uuy @ =1<001>, <0205},

(lt)

gs v,,,u)(<001>)=<001>'Ub=<001><712>=2'

- "u)’

sy, 000 D1 =2
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THEOREM 2.2.1 Let (S(v,,,u)» Up, U,) be a number representation
system, then fig v) (rn f(s )y () =6 forall r=r'.

) v,y Y Uy ‘

Proor. If f(s(, gy (DO f(s oy U ) (r') # ¢ 'where r=r', then
there will be a v e C(v,) 0 “that ve fs, ., v.00( and
ve f(S uh,u”) (rr). b

(ty, v
That is, v- v, =7 and v - v, =r', a contradiction.

M h

2.3 Deterministic Number Representations (DNR)

Definition 2.3.1 For a number representation system
(S, v,y Vb V), if each integer in S, , , maps to at most one vector in
C(v,), that is If(s , bvy (M1 for all r in S(U v, We say that

(S(L, by Up,U,) is a determmlstlc number representation (DNR)
system

Results 2.3
a) 'f(s('h"'u)f Yy le) (r) = 1’ vr e S(ul.l' uu).
b) For a DNR (S, , ) Vs,V.). &s is a1 and onto

.,y Vs Yy

mapping from C(v,) to S(u,,.u )

THEOREM 2.3.1 Let (S, ) Up,U,) be a number representation
i1
system. If b, =1 and b; > Z u;*b;fori=2, nthen Sw,.v ) Up, U,) 1S

: i=1
a DNR system.
PROOF. Assume that (S, , ) U, v,) is not a DNR system

Then Jv, #v; stV U=V Up.
et U =<2,,1: 22 Zmn 0 £z,;%y, Vi=1,2,
V=<2, 2195 - 21> OSz,iSu,- vi=1,2, =n

Without loss of generality, we process them from n down to ¢
We can find the first { s.t. z,; # z; and assume that z,,; > z;;.

n "
sz *bj=zzlj*bj
Jj=1 i=]
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n

n
*b,-+Zz,,u-*bj=z,i*bi+Zzlj*bj
st

j=1
J# J#i
-1 n
(zmi - zli) * bi = Z (zlj - zmj) * bj + Z (zlj - zmj) * bj
j=1 J=i+l

Rj = 2y V] = (L + 1), n,

n
D (@;—2,)*bj=0

J=ixl
-1

=)+ i 3, =2 b,
=1

i1 i-1
2 — 2,; -
b, = Z @~ 2m) *b;< ) *b a contradiction. O

(zmi - zli) -

j=1 =1
THEOREM 2.3.2 Let (S, ) Vp» V) be @ DNR system. If b, = 1 and
i1
b;= Z wj*bji+1, for i=2,3,....n, then S =T, ,)
1

PROOF. It is obvious that 8, < T, u)

We shall prove T, ,,< S, )by mathematical induction on the
lengths of v, and v, . .

Basic of induction: let n=1, i.e., u, = <u,;> and v, =<b;>.

Vr e [0, ul * bl] =T(v,,,v")
0<r<u, thus <r> e C(v,).
<r>-<b>=r*b =rthusre§, ,,

Hypothesis: Let n =k and the result holds. That is,

k
vre 0’ Z u’j * bj = T(Uhr v,) 3 Uy = <21, 29, » 2> Uy, € C(Uu),
J=1
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k
st. r=uv,- Ub=sz * b
=1

Consider n=%k + 1:

k
bk+l: Zuj*bj + 1.

j1
R+l

vre| 0, upxb; =T, o)
1

Let r' =r mod by,,.

k
Ujpey * bpry + Z u; * b

- ;
¥ =1
Let 2z, ,=| 77— < : = U, -
* bk+1 bk+1

Then =25 * bk+l + 7.

k
r'<by, = Zuj*bj + 1.
J=1

k
& .x b
r' < Zuj bj.
=1

By induction hypothesis:

k
! _ ' ? _
v, =<2,2, .., 2p>8b.r =0, vy = Z Zj* b;.
=1
Thus 3, =<2,25, ..., Zpy > Uy, € CV),
k1 k
—_— o _— r
s.t. Uy - Ub—ZZj"‘ bj_zk+1 *bk+1+22j* bj_zk+1 *bk+1+r =Ty
=1 J=1

Therelore, r € §(, ) U
" e

2.4 Nondeterministic Number Representations (NNR)

Definition 2.4.1 A number representation system is a nondeter-
ministic number representation (NNR) system if it is not a DNR.
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THEOREM 2.4.1 Let (S, ,y Up,V,) be a number representation

| -1

system. If b= and  b;<M u;*b; for i=2,..,n, then
j=1

(S, ,vy U V) is an NNR system.

PROOF. Let 0<z;<u; Vi=3,4,...,n, and let

o=l L, By vy B

U= <b2, 0, KFy <oy Zﬁ>‘.

Clearly, v, # v,.

2-1
Since by < ) u;* b;=u,, then both v,, and v, are in C(v,).
=1
I
Up Ub=<0, 1, Gy vsy &p > <b1', ey bn>= b2+ Z z; ¥ bi'
i=3
i
U Up=<by, 0,23, ..., 2,> - <by, ..., by>=byx by + ) 2, % b,
i=3

n
=b2+ZZ£*b£.

=3

The vectors v,, and v; map to the same integer.

Therefore, (S(Ub,u 3 Up, v,) is an NNR system (by Definition
2.4.1). O |

THEQIltEM 2.4.2 Let (Sy, , Vp,V,) be an NNR system. If b;=1
. i

(Vg
and b; <) u;j* b; for i=2, ..., n, then 8. 03= Ty, 0.y
=1
PROOF. Clearly, S, ,,c T )
We shall show that S
vy of v, and v,,.
Basic of induction: let n =1, 1.e. v, = <u;> and v, =<b,>.

vy 2 Ty, vy by induction on the lengths vg and

(uh ! (Uh ’ Ul

Vrel0u *b]=T,

Uh ’ Uu),
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0<r<u, thus r € C(v,),
<r>-<by>=r*b, =r, thus reS(UI’U)-

Hypothesis: Let n =k and the result holds.

k
Vrei 0, Z u; * b; =T(v‘,v), Jv, =<2y,29, ..., 3>
j=1
where
k
0<z<u; Vj=1,2,..,k (e v, e Cv,) s.t.r:vm-vb=22j* by.
=1
Consider n=k + 1,
k+1
Vre O,Zuj*bj =T

(UIJ J l)“)'
j=1

Case [

r
l bk 1J > Uy, let 7J=r—uk+1 * bk+1'
e

k+1 k+1 k
rSZuj*bjDr’SZuj*bj—uk+1*bk+1=Zuj*bj.
J=1 =1 J=1

By induction hypothesis:

3 <z, 29, ..., 2> where 0<2;<y; vj=1,2, ..k,

k
gt.r =ZZJ' * bj
J=1

Clearly, <2y, 25, ..., 2, Up,> € C(v,) and
<2y, 29, e By Upe > Up =T + Uy * by =T
Thus, re S(u,,,u“)-
Case 11
r

B | SUe let ¥ =r mod b,,,.
| Tkl
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k
7’<bk+152u]'*bj
1o

By induction hypothesis:

d<z, 2 z,> where 0<2z;<u, Vj=1,2 k&,

k
st.r =sz* b’

1
-
b SUp,y, thus <z;,2, ., 2. 3 |>¢ C(v,).
I_ k+lJ k+1
<2,,29 ., %

r !
T el B R e
| VRl iy

Thus, re S, ,, O

Example 2.4.1 Let (Sw, vy Ubs V) be a number representation
system with v, =<5, 7, 3, 1> and v, =<2, 2,2, 3> Table 2.2 lists the
map Of fis(r,_w")' Up» u)

Table 2.2
An NNR System

| 20125 <2 2> ‘ |
0 |<0000> l; <2 Ol ><2 100><111_ |
b S i |

' 1 |<0001> |18.<2101><).022.><1113> |

- |"%|<n120><0211> 7
<)10)><707'3><17()0>
2 |l< 2>
1 © | ’O()(,)" - |1SH<11‘71><0‘>1‘7> |
1 | 1<2103><2110><1201> |

e

| 3 [<00102<0003>  |®0c1122><0213><0220> |

| | N P <2111><1202><1123> {

| 4 <oo> 12 o915 - ‘
o [ o <11u><1703>(1)10»

| 5 [<0012><1000> 22| 09995 |

| O D e e

| |e211: 2120><12

| 6 |<0013><1001><0020> |23|<2113>< 120><1211>

Rt it | “°|<0223> -

| 7 1<0100><1002><0021> |24 <)z00><11z1> <1212> |

(Table 2.2 Contd
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g |<1010><0101><1003> || 9901, 91995 <1218><1220>
<0022>

9 |<1011><0102><0023> | 26|<2202><2123><1221>

10[<2000><1012><0110> | 5| 9903, . 2210><1222>
<0103> :

11 <2001><1020><1013> 28|<2211><1223>
<0111> :

12 <2002><1100><1021> 29|<2212>
<0112>
<2010><2003><1101>

13| 10225<0113><0120> | 30|<2213><2220>
<2011><1102><1023>

14)<0200><0121> il
<2012><1110><0122>

15| 0201><1103> ]
<2013><2020><1111> |

16| _0202><0123> 33| <2223>

THEOREM 2.4.3 Let (S, , 3 Ub» Uy) be an NNR system. Let
b’ “u
V.= f(s(v“"), v, u) @ for r in S(vb,v")’ and ry,ry, rg€e S,,v) Where
rg=ry+ry. If the boundary vector v, is unlimited, IV,_’I 2
Max{IV,.II, v, 1}
PROOF. For any veV, and we V,z,(u+w)- Up=V-Up+W- U=
ry+ry=rz = (v+w)e V, under the condition that v, is unlimited.

Thus, it is true that P={v, + w;|v, € V., weV, for all 3§ ¢ V,_,
and [Pl <V, |. '

Because |P| =1V, [, this implies that IV,ZI < |V,3|.
With the same method, we can derive that IV’.' < IV,3I.
That is, IV, | 2Max{|V, [, |V 1}. O

2.5 Combination of DNR and NNR

Given a DNR system (S(u,,,, ug Ubp» Uup) and an NNR system
(S, u,y» VbN» Vun), We can construct a mapping h from S v 0

oy Ven V) (r )

where

25w, where h(r)={sls=gg
@ppy tup’

nC,p}. and a mapping k from S, ,, to S, ,
k(s) = g(s(,,, o Vb V) (v) forve f(S

Ubpr» uuD) (v)’ be f(s(l'bN

uN) 3

Upp» Uul)) (s)

Cotr Cu?
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Definition 2.5.1 Let (S, ) Upp: Vup) be a DNR system and let
(S(v,,\.,u »» UbN» v,n) be an NNR system. We say that the mapping A is
nice if and only if v,y<v,p and S, , 3= T, .00

PROPERTIES 2.5.1 Let (S, o ) UbDs Vub) and (S, v, VbN> Vun)
be the same as in Definition 2.5.1. If the mapping h is nice, then the
following properties hold:

a) |h@|21forallrin S("w b

b) (NN h(@)=4¢ for all r#r'.
c¢) k(c)=r for c € h(r).
- PROOF. a) Vr e S(me U lf(s("m .

Since v,y <v,p and g(s(“w gy U+ V)

from C(v,p) to (S(vm 0.0 (by Results 2.3.1 (b)), so that V re
(S(v,,N, U, Ih(r)l 2 L
b) Since f(s(%

N "uN)’ vbN ! U"N)

Upxes V) (M| 21 (by Results 2.2.1

is a 1-1 and onto mapping

(r) n fis("bN' CuN Upx V) (r ) = ¢ fOl' an r#r

(by Theorem 2.2.1), and &s, D is a 1-1 and onto mapping
b,

D 'uD’ Upp+ Y,

from C(v,p) to S(UW 0,0 (by Results 2.3.1), so that h(r) N h(r') = ¢ for all
r#r.
¢) For ce h(r),v e fg

o Upn V) (7‘) N C(qu)
st.c= g(s(“w 1 %50 ) ).
Thus ve f(s( (v)=r, then
b,

r. O

(¢©) and 86,

D 'y l)’ VsD» vul) AT PN Upwo qu)

THEOREM 2.5.1 Let (S, ) VD> VuD) and (v, v, VbN: Vun) be
the same as in Definition 2.5.1. If h is nice, then |S, , )| >

l S(UbN' qu) I )

PROOF. (S, v, Vsns Vun) is an NNR. It is obvious that
‘S(vlu\" ”mv)l < 1Cum -
By definition 2.5.1, if h is nice then

UuN SUp = C(qu)l < |C(qu)|

(S, v, VD> Vup) 18 @ DNR, it is obvious that
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C(qu) l = l S(vle_‘ UMD)
Collecting above relations derives that

IS, > | S(vw Ml O

\Ybl) vul)) l

CRYPTOSYSTEM

The mappings f(s(.',..» , v, vy and 8BS, b
struct encryption algorithms by keeping the base and boundary vec-
tors as the secret keys. An encryption algorithm which bases on a

fis S ey by, v,) TAPS A plaintext to a set of vector-type ciphertexts. How-

v

ever, such cryptosystem is insecure because the information of the
underlying base and boundary vectors are easily analyzed, even
though they are kept secret. An encryption algorithm which bases on
a g(s ey forms a cipher [6] which is also thought to be insecure

vy can be used to con-
T

1, 4, 5] Combining a f(s ) and a g(s VY that is a h map-

ping, seems to work we]l

3. NDC

An NNR followed by a DNR determine a mapping h which maps
an integer to a set of different integers. A. cryptosystem bases on a
nice mapping A is called an NNR-DNR cipher (NDC), as depicted in
Figure 3.1, which may map a plaintext to a different ciphertext each
time for a given key. The key value includes the base and boundary

W Vu VD WD “E\‘;
: !
' mapping T
m “’ 4‘ MM l — =+ DMR .
Plaintext ’ [ R s v | : : Ciphertext
| K
L_. S “-I mapping i)
M- r—p NNR fae=————=—r! DNR e c
\ J

Figure 3.1. NDC cipher
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vectors (Uyn, Uun» Upps Uup) Of the underlying NNR and DNR system.
They should be kept secret. In the cryptosystem, S(v ) is the plain-

text space and S(v b is the ciphertext space. For decryptlon the
corresponding k- mappmg is utilized (by Properties 2.5.1 (¢)).

3.2 Key Generation

The key value (vyy, Uun, Upp, U,p) should be selected so that the
corresponding h mapping is nice (Definition 2.5.1), thus each plain-
text in S(UM, b9 has at least a ciphertext in S(vw, v, (Properties 2.5.1

(a)). A method of key generation is as follows:

1) Select a boundary vector v, which should be positive.
2) Set both v,y and v,p to the value of v, .

3) Select the base vector of the underlying NNR, v,y, by Algo-
rithm 3.2.1 (according to Theorem 2.4.1).

4) Select the base vector of the underlying DNR, v,;, by an
algorithm similar to step 3 (according to Theorem 2.3.1).

Algorithm 3.2.1 (select base vector vyy) [7]

Input:

vector v, N =<U;, Uy, u,>.
Output:

base vector vyy=<b;, by, ., b,>

Process:
Begin:

2. Forj=2ton

Randomly [2] choose a number for b; such that
i1

i=1
End
3.3 Selection of Ciphertext

The f(s( ) Vs V) mapping of the underlying NNR may map an in-
Cip Y h? Ve

teger to multiple vectors. While encrypting, just one of the resultant
vectors is selected. Algorithm 3.3.1 represents a selection method.
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Algorithm 3.3.1 [T]
Input:
integer x (the plaintext)
a base vector v, =<b,;, b,  b,,>
a boundary vector v, = <u, Uy, Uy >
Output:
a vector v=<vy, Uy, U,> € C(v,).
Process:
Begin
m = x.

For i =n down to 2 do

Begin »
, i-1
temp_m=m-Y u;*by;
j=1
if temp_m < 0 then lower =0
lemp_m
else lower = =— | +1
by
| m )
wpper = m1n| b v Iy ‘
¥ 4 /
v; = a random number in the range [lower, upper|
m=m-uv,- b
End
vy=n
End.

3.4 Concatenation of NDCs

The NDC ciphers can be concatenated as depicted in Figure 3.2
if the successor accepts all outputs of the preceder. For example, given
two NDC ciphers, NDC, and NDC,, with mappings h; and h,, respec-
tively, the cipher, NDB, followed by NDB,, works well if the input set
of h, covers the output set of h,.
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Keyt Key Keyn

Figure 3.2. Concatenation of NDCs

3.5 Enhanced NDC

The nondeterministic property of an NDC derives from the un-
derlying NNR system. However, an NNR does not distribute uniformly.
For example, the distribution map of the NNR in Example 2.4.1 is
graphically shown in Figure 3.3. In this example, there are 8 integers
each mapped to exactly one vector. Such situation violates the re-
quirement of nondeterministic mapping of NDC. Thus, some enthance-
ment is necessary for validating an NDC.

Figure 3.3. Distribution map of the NNR in Example 2.4.1
3.5.1 Use the Middle Part of Sw,.v,)

Consider an NNR with mapping f(s( Uy U which has the prop-
U U % * P

erties described in Theorem 2.4.1. By Theorem 2.4.3 we know that
| fs u, vy ()| will increase with respect to r if the boundary vector

Upy is unlimited. Although, in a practical case, the boundary vector is
always limited, lf(s( U0 ()| is likely to just drop at tail if the
g - 4, L T

-ty
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value of v,y is not too small, for instance Example 2.4.1. Thus, order
S, v @s an increasingly sequence, the middle part of Sq,,v,) can be
used.

The method is to add an offset value X to a plaintext mn before en-
crypting, as depicted in Figure 3.4. Plaintexts are also limited below
a threshold to prevent the low mappings values.

I
Key2—

m > C
Plaintext Ciphertext
m

Figure 3.4. The cryptosystem with plaintext offset

3.6 Data Expansion

By Theorem 2.5.1, we know that the ciphertext space of an NDC
1s always larger than its plaintext space. This means that data expan-
sion occurs while encrypting. As quantitating the data expansion rate
of a cipher being

average length of ciphertexts
average length of plaintexts’

the data expansion rate of an NDC is as below:

For an NDC with key (Upy. Uuns Upp» Uyp), assuming plaintexts
with equivalent frequency, the average length of a plaintext and a
ciphertext will be

logy((vpn - vu)Y) - logy((vpp - Vup)Y)
UpN * UuN UsD * Uup

, respectively.

Then the data expansion rate is

(UbN i qu) ) 1°g2((vbD : UuD)!) .
(UbD : UuD) ' 1Og2((UbN ' qu)!)
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As concatenating multiple NDCs, the data expansion rate will be

(Qle ] vle) lo_g 2((vth i __qu?)!)
(Uth ) Ui;Dt) ' 103 2(_(Ule ) UuNl).,!) +

where (vyn;, UHM) are the NNR’s base .and_,bdundary vectors of the
first NDC, (v,p,, v,p,) are the DNR’s base and boundary vectors of the
last NDC.

4. SECURITY ANALYSIS

The security of an NDC heavily depend on the underlying NNR
system which i1s a nonlinear transformation.

A well-designed NDC may probabilisticly map a plaintext to dif-
ferent ciphertexts each time for a given key. The information of the
frequency of a plaintext appearing are hidden. This straitens the
cryptanalysis. '

The base and boundary vectors are kept secret, thus an NDC
forms a black box that maps an integer to another integer. If the secret
keys are large enough, an attacker is difficult to analyze the inter-
mediate vector value for a given plaintext-ciphertext pair. Since the
NDC scheme is not a cipher of iterating weak functions, such as the
Feistel structure ciphers, the famous known/chosen-text attacks like
the linear and differential attacks seem to be difficult to apply on it.

5 CONCLUSIONS

An NDC cipher may map a plaintext to different ciphertexts each
time for a given key. If the underlying NNR and DNR system are cho-
sen appropriately to contain the high nodeterministic property, the
cryptanalysis is difficult.

Multiple NDCs can be concatenated together to be a more com-
plicated and secure cipher. However, data expansion increases also.

NDCs are secret-key ciphers, all the underlying base and boundary
vectors should be kept secret.
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